# Beyond the lessons learned from international comparative research in education

Barbara Japelj Pavešić Educational Research Institute, Slovenia

#### Aims of international comparative research

Postlethwaite (1988)\* discriminated four major aims of comparative education:

- "Identifying what is happening elsewhere that might help improve our own system of education"
- "Describing similarities and differences in educational phenomena between systems of education and interpreting why these exist"
- "Estimating the relative effects of variables (...determinants) on outcomes (both within and between systems of education)"
- "Identifying general principles concerning educational effects" (relationship between variables within an educational system and an outcome)"

<sup>\*</sup>Postlethwaite, T.N., The Encyclopeadia of Comparative Education and National Systems of Education, Preface, Oxford, Pergamon, 1988.

### Development of international comparative studies in education

50 years ago: first int. comparisons of outcomes of school systems

- The need to compare educational systems recognized;
- Beginning of development of measurement of educational outcomes
- Equal student tests and questionnaires for all participants

20 years ago: issues of comparisons

- Measurement of knowledge + factors (test theories, indices)
- Age and years of schooling
- Measuring knowledge covered by curriculum or competences
- Analyzing trends

#### Today: Use of results

Implementation
of effective
practice from
other countries
(i.e.: from Asia to USA Singapore mathematics)

Recognise
causual relations:
managing all
influential factors
on achievement

#### Limitations to the use of findings

- Pure scientific experiments are not applicable in education.
  - It is not possible to control all influential variables.
  - It is not possible to set the control group.
  - Significant causal relations are therefore rarely found.
  - Primary results: in the form of national means by background variables or indices on national level



- Comparisons are not precise enough to serve as proposals for educational changes in a country.
- Additional analyses are needed to reveal deeper links.

#### Changing in use of statistical methods

- Take into consideration very large data sets and large numbers of variables at the same time (exploratory against confirmatory analysis)
- Find new kinds of hierarchical links between achievement and educational variables on school and student levels
- Finding stronger links between different variables over smaller groups inside large sets of participating units + qualitative methods (clustering)



#### Slovenia & TIMSS Advanced mathematics achievement



# General academic secondary schools - gymnasia



- General program for all students, the same mathematics for all students, most advanced level in Slovenia, 40% of age cohort
- Final examination (*matura*) from mathematics required for any university study, can be done at basic or advanced level.
- In advanced level students can reach higher number of points =
   more chances for being accepted in the intended study.

#### **QUESTIONS:**

- Characteristics of best students?
- How can teachers/system recognize them in advance?

# Mathematics achievement by the area of future study



#### TIMSS achievement, gender and grades



#### TIMSS achievement, levels of math exam & grades



#### Finding groups of similar TIMSS students

Find groups of mathematics students by the method of clustering:



- Choose student/teaching variables to look for similarities between students.
- 2. Find groups of similar students.
- 3. Determine their characteristics.
- 4. Link mathematics achievement to characteristics of groups.
- 5. Present ideas "how to recognize students" to provide for them appropriate opportunities to learn.

#### New approach: TIMSS as symbolic data

- Keep nominal structure of data (i.e. answers always, few)
- Presentation of student data by vectors:

$$X = (0, 1, 0, 0, 1, 0, 0, 0, 1, ...)$$
var 1 var 2 var 3

A, B, C, D A, B, C, A, B, ...

- Dissimilarity between two students vectors:
  - Distance between students is an Euclid difference between students' vectors

#### Clustering approach

- Repeat until the best solution is reached:
  - Distribute students into given number of groups so that dissimilarity inside each group is minimal.
  - It is heuristic approach\*.

#### Extract characteristics:



- A variable is said to be characteristic for the cluster, if large proportion of the cluster units have the same value.
- Descriptions of clusters

Summarize characteristics to describe students in each cluster.

\*The software used: CLAMIX & CLUSE: Korenjak Černe, S., Batagelj V.

#### Clustering of TIMSS for two sets of variables

#### Find clusters of similar students by:

#### A. student background and attitudes

- attitudes of students towards mathematics and teacher,
- home environment, socio-economic status
- education of parents, perception of future education

#### B. student learning environment

- reports about class and teacher activities at lessons,
- teacher's report about realization of teaching in class,
- the student's view of the teacher characteristics
- the school climate
- Best solutions: 10 clusters for each sets of variables A and B.

#### Distribution of students to clusters

#### Background of students



#### Learning environment



Cluster 1: missings

Cluster 7: missings

#### **Findings**

- The largest differences among clusters made:
  - teachers characteristics
  - grades
  - reasons for choosing the math program
  - parental support



- Teacher characteristics: students asked what makes good teacher (4 categories-importance)
- Parental support: students asked how much parents support learning, thinking they are smart, give them emotional support

#### Mathematics for girls & physics for boys?

#### Cluster 3: Motivated girls for math with strong parental support

- almost all girls, with excellent grades for math and physics in G8
- 2/3 take the advanced level of the mathematics exam and not physics
- strong support from parents
- enjoy math problems, positive attitudes toward mathematics
- 60 % always like mathematics and worked hard on TIMSS test.

#### **Cluster 7: Successful physics students**

- boys who are good at physics but not at mathematics.
- 91 % take physics as an optional subject in the final examination
- 76 % do not take the advanced level of the mathematics exam.
- 58 % had excellent grades from physics and 50% from math in G8
- 78 % of students has his own computer.



#### Expectations from a good teacher



### Cluster 10: Students with high expectations of a good teacher with strong support from parents and high self-confidence.

- High expectations of a good mathematics teacher:
   more than 80 %: good teacher gives additional explanations,
   adapts the speed of explanation to students' needs, is fair,
   has authority and provides clear grading criteria.
- Having a good teacher was a very important reason for choosing the level of the mathematics exam, but
- only 33 % take the advanced level of the final math exam.
- 80 % students said that parents like them very much
- 60 % of students' parents encourage their work for school.
- 70 % of students strongly agree that their parents think they are smart.

## Cluster 8: Most successful students in mathematics and physics

- Over 90 % had excellent grades for mathematics and physics in G8
- Take the advanced level of the final mathematics exam in grade 12
- They recognise (94 %) good teacher as someone who
  - explain content well (94%)
  - adapt speed of explanation to students' need (67%).
- They choose the advanced level of the mathematics exam because
  - they are doing well in mathematics and
  - have positive attitudes toward mathematics.
- 73 % also take advanced physics program.
- Almost 70 % of students have their own computer.
- 70 % report that their parents think they are smart.
- Two thirds are boys.



### TIMSS achievement: Countries and clusters of Slovene students



#### Future of group of best students?



# TIMSS achievement by clusters of learning environment



#### All students have very good prepared teachers:

- explain the content well, have authority, are fair and have clear grading criteria.
- appreciate student work for mathematics outside school.
- always give homework, always as set of exercises,
- never ask students to find examples of the use of mathematics or data collection and analyses.
- participated in training programs about math content and use of ICT.
- More than 2/3 of students never use computer or calculator for modeling, solving equations or algebraic expressions.



- More than 2/3 students
  - every lesson listen to teacher explanations
  - never have to read textbook in school or for homework.
- More than 1/2 of students agree that the teacher
  - is preparing them well for final exam,
  - makes students like to work on math problems,
  - makes students feel successful.
- Teachers with very high expectations for student achievement.

#### Conclusions: Is our method usable?



#### We found

- students in Slovenia who scored highest in TIMSS A!
- characteristics of teachers, linked to high scores of students
  - Well prepared, demanding but fair, with clear grading system
  - Good explanation of content, learning without textbooks
  - Value students' work for mathematics done outside the school
  - No need for intensive use of ICT, but homework every lesson
  - Make them like to work on math and feel successful



Did the method help to understand structure of general gymnasia students and teaching better?

### **THANK YOU!**

Barbara Japelj Pavesic

Educational Research Institute, Ljubljana, Slovenia

barbara.japelj@pei.si

www.pei.si